A mechanism for plus-strand transfer enhancement by the HIV-1 nucleocapsid protein during reverse transcription.

نویسندگان

  • P E Johnson
  • R B Turner
  • Z R Wu
  • L Hairston
  • J Guo
  • J G Levin
  • M F Summers
چکیده

The HIV-1 nucleocapsid protein (NC) functions as a nucleic acid chaperone during the plus-strand transfer step in reverse transcription by facilitating annealing of the primer binding site (PBS) sequence in the short plus-strand strong-stop DNA fragment [(+) SSDNA] to a complementary site located near the 3' end of the minus-strand DNA [(-) PBS DNA]. To investigate the mechanism by which NC performs this function, we have prepared an 18-nucleotide (-) PBS DNA for nuclear magnetic resonance (NMR) based structural and NC binding studies. The (-) PBS DNA forms a stable hairpin (T(m) approximately 42 +/- 5 degrees C) that contains a five-residue loop and a bulged thymine in a guanosine-cytosine-rich stem. Addition of substoichiometric amounts of NC results in significant broadening and reductions in NMR signal intensities of the Watson-Crick base-paired imino protons and a reduction by 20 degrees C in the upper temperature at which the imino proton signals are detectable, consistent with destabilization of the structure. The results suggest that inefficient annealing in the absence of NC may be due to the intrinsic stability of an internal (-) PBS DNA hairpin and that NC facilitates strand transfer by destabilizing the hairpin and exposing stem nucleotides for base pairing with the PBS sequence in (+) SSDNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleocapsid Protein Modulates the Specificity of plus Strand Priming and Recombination Patterns in Human Immunodeficiency Virus

Title of Document: NUCLEOCAPSID PROTEIN MODULATES THE SPECIFICITY OF PLUS STRAND PRIMING AND RECOMBINATION PATTERNS IN HUMAN IMMUNODEFICIENCY VIRUS Deena Thankam Jacob, Doctor of Philosophy, 2008 Directed By: Dr. Jeffrey J. DeStefano Associate Professor Department of Cell Biology and Molecular Genetics Replication in HIV (human immunodeficiency virus) occurs through reverse transcription in whi...

متن کامل

Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein

HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (-) strong-stop DNA followed by rev...

متن کامل

Fate of HIV-1 cDNA intermediates during reverse transcription is dictated by transcription initiation site of virus genomic RNA

Retroviral reverse transcription is accomplished by sequential strand-transfers of partial cDNA intermediates copied from viral genomic RNA. Here, we revealed an unprecedented role of 5'-end guanosine (G) of HIV-1 genomic RNA for reverse transcription. Based on current consensus for HIV-1 transcription initiation site, HIV-1 transcripts possess a single G at 5'-ends (G1-form). However, we found...

متن کامل

Fidelity of plus-strand priming requires the nucleic acid chaperone activity of HIV-1 nucleocapsid protein

During minus-strand DNA synthesis, RNase H degrades viral RNA sequences, generating potential plus-strand DNA primers. However, selection of the 3' polypurine tract (PPT) as the exclusive primer is required for formation of viral DNA with the correct 5'-end and for subsequent integration. Here we show a new function for the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NC) in r...

متن کامل

Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: biological implications.

The HIV-1 Gag polyprotein precursor has multiple domains including nucleocapsid (NC). Although mature NC and NC embedded in Gag are nucleic acid chaperones (proteins that remodel nucleic acid structure), few studies include detailed analysis of the chaperone activity of partially processed Gag proteins and comparison with NC and Gag. Here we address this issue by using a reconstituted minus-str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 39 31  شماره 

صفحات  -

تاریخ انتشار 2000